我们提出了一种用于超声心动图视频的新型异常检测方法。引入的方法利用心脏周期的周期性来学习各种潜在轨迹模型(TVAE)的不同变体。对这些模型进行了对婴儿超声心动图视频内部数据集的健康样本的培训,这些数据集由多个室内视图组成,以了解健康人群的规范性。在推断期间,最大值基于后验(MAP)的异常检测以检测我们数据集中的分布样品。所提出的方法可靠地识别出严重的先天性心脏缺陷,例如Ebstein的异常或Shonecomplex。此外,它在检测肺动脉高压和右心室扩张的任务方面,通过标准变异自动编码器实现了优于基于地图的异常检测。最后,我们证明了所提出的方法通过热图提供了对其输出的可解释解释,该图突出了与异常心脏结构相对应的区域。
translated by 谷歌翻译
Models of sensory processing and learning in the cortex need to efficiently assign credit to synapses in all areas. In deep learning, a known solution is error backpropagation, which however requires biologically implausible weight transport from feed-forward to feedback paths. We introduce Phaseless Alignment Learning (PAL), a bio-plausible method to learn efficient feedback weights in layered cortical hierarchies. This is achieved by exploiting the noise naturally found in biophysical systems as an additional carrier of information. In our dynamical system, all weights are learned simultaneously with always-on plasticity and using only information locally available to the synapses. Our method is completely phase-free (no forward and backward passes or phased learning) and allows for efficient error propagation across multi-layer cortical hierarchies, while maintaining biologically plausible signal transport and learning. Our method is applicable to a wide class of models and improves on previously known biologically plausible ways of credit assignment: compared to random synaptic feedback, it can solve complex tasks with less neurons and learn more useful latent representations. We demonstrate this on various classification tasks using a cortical microcircuit model with prospective coding.
translated by 谷歌翻译
Language models (LMs) have demonstrated remarkable performance on downstream tasks, using in-context exemplars or human instructions. Recent works have shown that chain-of-thought (CoT) prompting can elicit models to solve complex reasoning tasks, step-by-step. However, the efficacy of prompt-based CoT methods is restricted to very large LMs such as GPT-3 (175B), thus limiting deployability. In this paper, we revisit the fine-tuning approach to enable complex reasoning in smaller LMs, optimized to efficiently perform a specific task. We propose Fine-tune-CoT, a method that leverages the capabilities of very large LMs to generate reasoning samples and teach smaller models via fine-tuning. We evaluate our method on publicly available LMs across a wide range of complex tasks and model sizes. We find that Fine-tune-CoT enables substantial reasoning capability in small models, whereas previous prompt-based baselines exhibit near-random performance. Student models can even outperform the teacher in some tasks while reducing model size requirements by several orders of magnitude. We conduct extensive ablations and sample studies to understand the reasoning capabilities of student models. We also identify several important nuances that have been overlooked in concurrent fine-tuning works on CoT and address them in our analysis.
translated by 谷歌翻译
After just a few hundred training updates, a standard probabilistic model for language generation has likely not yet learnt many semantic or syntactic rules of natural language, which inherently makes it difficult to estimate the right probability distribution over next tokens. Yet around this point, these models have identified a simple, loss-minimising behaviour: to output the unigram distribution of the target training corpus. The use of such a crude heuristic raises the question: Rather than wasting precious compute resources and model capacity for learning this strategy at early training stages, can we initialise our models with this behaviour? Here, we show that we can effectively endow our model with a separate module that reflects unigram frequency statistics as prior knowledge. Standard neural language generation architectures offer a natural opportunity for implementing this idea: by initialising the bias term in a model's final linear layer with the log-unigram distribution. Experiments in neural machine translation demonstrate that this simple technique: (i) improves learning efficiency; (ii) achieves better overall performance; and (iii) appears to disentangle strong frequency effects, encouraging the model to specialise in non-frequency-related aspects of language.
translated by 谷歌翻译
Heteroscedastic regression models a Gaussian variable's mean and variance as a function of covariates. Parametric methods that employ neural networks for these parameter maps can capture complex relationships in the data. Yet, optimizing network parameters via log likelihood gradients can yield suboptimal mean and uncalibrated variance estimates. Current solutions side-step this optimization problem with surrogate objectives or Bayesian treatments. Instead, we make two simple modifications to optimization. Notably, their combination produces a heteroscedastic model with mean estimates that are provably as accurate as those from its homoscedastic counterpart (i.e.~fitting the mean under squared error loss). For a wide variety of network and task complexities, we find that mean estimates from existing heteroscedastic solutions can be significantly less accurate than those from an equivalently expressive mean-only model. Our approach provably retains the accuracy of an equally flexible mean-only model while also offering best-in-class variance calibration. Lastly, we show how to leverage our method to recover the underlying heteroscedastic noise variance.
translated by 谷歌翻译
Active target sensing is the task of discovering and classifying an unknown number of targets in an environment and is critical in search-and-rescue missions. This paper develops a deep reinforcement learning approach to plan informative trajectories that increase the likelihood for an uncrewed aerial vehicle (UAV) to discover missing targets. Our approach efficiently (1) explores the environment to discover new targets, (2) exploits its current belief of the target states and incorporates inaccurate sensor models for high-fidelity classification, and (3) generates dynamically feasible trajectories for an agile UAV by employing a motion primitive library. Extensive simulations on randomly generated environments show that our approach is more efficient in discovering and classifying targets than several other baselines. A unique characteristic of our approach, in contrast to heuristic informative path planning approaches, is that it is robust to varying amounts of deviations of the prior belief from the true target distribution, thereby alleviating the challenge of designing heuristics specific to the application conditions.
translated by 谷歌翻译
Nucleolar organizer regions (NORs) are parts of the DNA that are involved in RNA transcription. Due to the silver affinity of associated proteins, argyrophilic NORs (AgNORs) can be visualized using silver-based staining. The average number of AgNORs per nucleus has been shown to be a prognostic factor for predicting the outcome of many tumors. Since manual detection of AgNORs is laborious, automation is of high interest. We present a deep learning-based pipeline for automatically determining the AgNOR-score from histopathological sections. An additional annotation experiment was conducted with six pathologists to provide an independent performance evaluation of our approach. Across all raters and images, we found a mean squared error of 0.054 between the AgNOR- scores of the experts and those of the model, indicating that our approach offers performance comparable to humans.
translated by 谷歌翻译
In this paper we propose a general approach to define a many-valued preferential interpretation of gradual argumentation semantics. The approach allows for conditional reasoning over arguments and boolean combination of arguments, with respect to a class of gradual semantics, through the verification of graded (strict or defeasible) implications over a preferential interpretation. As a proof of concept, in the finitely-valued case, an Answer set Programming approach is proposed for conditional reasoning in a many-valued argumentation semantics of weighted argumentation graphs. The paper also develops and discusses a probabilistic semantics for gradual argumentation, which builds on the many-valued conditional semantics.
translated by 谷歌翻译
Text-based personality computing (TPC) has gained many research interests in NLP. In this paper, we describe 15 challenges that we consider deserving the attention of the research community. These challenges are organized by the following topics: personality taxonomies, measurement quality, datasets, performance evaluation, modelling choices, as well as ethics and fairness. When addressing each challenge, not only do we combine perspectives from both NLP and social sciences, but also offer concrete suggestions towards more valid and reliable TPC research.
translated by 谷歌翻译
Self-supervised image denoising techniques emerged as convenient methods that allow training denoising models without requiring ground-truth noise-free data. Existing methods usually optimize loss metrics that are calculated from multiple noisy realizations of similar images, e.g., from neighboring tomographic slices. However, those approaches fail to utilize the multiple contrasts that are routinely acquired in medical imaging modalities like MRI or dual-energy CT. In this work, we propose the new self-supervised training scheme Noise2Contrast that combines information from multiple measured image contrasts to train a denoising model. We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss. The trained denoising operator achieves convincing quantitative and qualitative results, outperforming state-of-the-art self-supervised methods by 4.7-11.0%/4.8-7.3% (PSNR/SSIM) on brain MRI data and by 43.6-50.5%/57.1-77.1% (PSNR/SSIM) on dual-energy CT X-ray microscopy data with respect to the noisy baseline. Our experiments on different real measured data sets indicate that Noise2Contrast training generalizes to other multi-contrast imaging modalities.
translated by 谷歌翻译